Greg Egan on Nostr: For anyone who wants a proof with less intuition and more maths, the area of the ...
For anyone who wants a proof with less intuition and more maths, the area of the infinitesimal triangle added to the wedge by a change in s of ds is:
dA = ½ det |(cosh s, sinh s), d/ds (cosh s, sinh s)| ds
= ½ det |(cosh s, sinh s), (sinh s, cosh s)| ds
= ½ ds
dA/ds = ½
A = ½s
Published at
2024-12-13 07:05:35Event JSON
{
"id": "58640cfdcc4322483f1a7e0986661dd8513bf1620d11653128f4cd5df48400a9",
"pubkey": "0037e9f1404aa866c76ed1358206ac5387eb2d3589361a3802af0f260bda26d7",
"created_at": 1734073535,
"kind": 1,
"tags": [
[
"e",
"031bafa6978f4322b889841a80663080fb1c84915797f8c8a26c6f7b3305c741",
"wss://relay.mostr.pub",
"reply"
],
[
"proxy",
"https://mathstodon.xyz/users/gregeganSF/statuses/113644243201323135",
"activitypub"
]
],
"content": "For anyone who wants a proof with less intuition and more maths, the area of the infinitesimal triangle added to the wedge by a change in s of ds is:\n\ndA = ½ det |(cosh s, sinh s), d/ds (cosh s, sinh s)| ds\n= ½ det |(cosh s, sinh s), (sinh s, cosh s)| ds\n= ½ ds\n\ndA/ds = ½\n\nA = ½s",
"sig": "d5c14cc1c9f5def543bc733a97ec46acb3db612f25cc7e7b7057fbc15d9b2f033b61291b7f4f72096da051ffecacac5e2ff958833eb56527899b5f2b873fb45d"
}