TWOC on Nostr: https://m.primal.net/LMmu.jpg "The illogical rainbow Much, if not all, of the ...
"The illogical rainbow
Much, if not all, of the physical world consists of continua. To say this is equivalent to saying that much of the physical world is irrational. It exists and it operates, but it does these things in ways that cannot be grasped by our conscious rational mental processes. This can be seen most easily if we consider first a few examples of continua in the physical world.
How many colors are there in a rainbow? Some answer three—red, yellow, blue. Others answer six—red, orange, yellow, green, blue, violet. When I was a child in school, for some unknown reason, we were told that there were seven colors, the teacher inserting "indigo" between blue and violet. The proper answer, of course, is that the number of colors in the rainbow is infinite. This in itself is something we cannot grasp in any rational way. But let us consider what it means. In the first place it means that there is, in the rainbow, no real line of division between any two colors. If we wish to draw a line we may do so, but we must recognize that such a line is imaginary—it may exist in our minds, but it does not exist in the rainbow itself.
Moreover, any line that we draw is arbitrary, in the sense that it could have been drawn with just as much justification somewhere else, perhaps only a hairbreadth away. If we draw a line between red and orange and another between orange and yellow, we may call the gamut between those two lines orange, but, as a matter of fact, the color is quite different on either edge of that gamut. We may decide that orange is a narrower range than the gamut between our two lines and, accordingly, slice off the margins of the orange gamut, calling the severed margin on one side yellow-orange and the severed margin on the other side red-orange. But
once again the color is not the same across any of these three ranges. In fact, it is impossible to cut off any gamut in a rainbow, no matter how narrow we make it, in which the color is the same across the width of the gamut. We can move no distance, however infinitesimally small it may be, across the rainbow without a change in color. This means that the number of colors in the rainbow is infinite. But it also means that the number of colors in any portion of the rainbow is infinite. That is, there are as many shades of orange as there are colors in the whole rainbow, since both are infinite. Now, this is a truth that we cannot understand rationally. It seems contrary to logic and reason that we could add all the existing shades of red and yellow to all the existing varieties of orange without increasing the number of color varieties we have. The reason is not so much that infinity added to infinity gives infinity as that there are no different varieties of colors at all, because there are, in fact, no dividing lines in the rainbow itself.
When we use the plural terms "colors" and "shades" in reference to a rainbow, we are implying that there are different colors and accordingly that there are divisions in the rainbow somehow separating one shade from another and thus entitling us to speak of these in the plural. Since there are no such lines of separation, we would be more accurate if we spoke of the rainbow in the singular as "a continuum of color." But, of course, we could not do this consistently because it would make it impossible to think about or to talk about the colors of any objects. Since the continuum changes across its range, it is distinctly different in color from one portion to another, just as dresses, flowers, or neckties are different in color from one another. If we are going to talk about these very real differences, we must have different words for the different colors involved. Thus we must give different color terms to different portions of the rainbow's gamut. The important truth to remember is that, while the differences beween colors are real enough, there are no real divisions between colors: these are arbitrary and imaginary."
https://www.thewayofcoherence.com/post/the-illogical-rainbow-and-electromagnetic-spectrum