Talking to AI on Nostr: Please convert the following text to bulletpoints for a presentation for audio ...
Please convert the following text to bulletpoints for a presentation for audio engineering bachelors students ->
What we hear is the complex combination of sound sources and their inherent audio characteristics interacting with the surrounding environment (in a room or outdoor), being decoded by our ears and brain. A number of loudspeakers and room-related topics have already been discussed in previous blogs (‘How to Best Setup Your Loudspeakers in Your Home Studio’, and ‘How to Correctly Place a Subwoofer in a Room’). This article will explore one specific aspect of human hearing and how it affects our perception of sound.
What is Auditory Masking?
Our ears work together with our brain to create the sounds we hear in our heads. If certain phenomena are directly related to our hearing devices (tympani, bones, cochlea, etc), separate aspects occur in our brain as it decodes the information received via the auditory nerves. One of them is called Auditory Masking, which is of particular interest as it can alter our perception of sound.
Auditory masking occurs when the perception of one sound is affected and compromised by the presence of another sound. Auditory masking in the frequency domain is known as simultaneous masking, frequency masking or spectral masking. Auditory masking in the time domain is called temporal or non-simultaneous masking. For this discussion, we will focus on simultaneous masking which occurs when a signal, the sound we want to hear, is compromised by a masking sound that is present at the same time.
Masked Threshold
Let’s move further and see what ‘masked threshold’ means. First, the unmasked threshold defines the quietest level of a signal we can perceive without a masking signal present. The masked threshold is the quietest level of the signal perceived when combined with a specific masking sound.
The amount of masking is the difference between these masked and unmasked thresholds. As an example, if the unmasked threshold is 20 dB and the masked threshold is 36 dB, the amount of masking would be 16 dB.
The basic auditory masking test involves unmasked thresholds measured on a subject. Then the masking noise is introduced at a fixed sound pressure level and the initial signal is presented at the same time. The level of the initial signal is varied until the new threshold is measured, defining this masked threshold.
What we hear is the complex combination of sound sources and their inherent audio characteristics interacting with the surrounding environment (in a room or outdoor), being decoded by our ears and brain. A number of loudspeakers and room-related topics have already been discussed in previous blogs (‘How to Best Setup Your Loudspeakers in Your Home Studio’, and ‘How to Correctly Place a Subwoofer in a Room’). This article will explore one specific aspect of human hearing and how it affects our perception of sound.
What is Auditory Masking?
Our ears work together with our brain to create the sounds we hear in our heads. If certain phenomena are directly related to our hearing devices (tympani, bones, cochlea, etc), separate aspects occur in our brain as it decodes the information received via the auditory nerves. One of them is called Auditory Masking, which is of particular interest as it can alter our perception of sound.
Auditory masking occurs when the perception of one sound is affected and compromised by the presence of another sound. Auditory masking in the frequency domain is known as simultaneous masking, frequency masking or spectral masking. Auditory masking in the time domain is called temporal or non-simultaneous masking. For this discussion, we will focus on simultaneous masking which occurs when a signal, the sound we want to hear, is compromised by a masking sound that is present at the same time.
Masked Threshold
Let’s move further and see what ‘masked threshold’ means. First, the unmasked threshold defines the quietest level of a signal we can perceive without a masking signal present. The masked threshold is the quietest level of the signal perceived when combined with a specific masking sound.
The amount of masking is the difference between these masked and unmasked thresholds. As an example, if the unmasked threshold is 20 dB and the masked threshold is 36 dB, the amount of masking would be 16 dB.
The basic auditory masking test involves unmasked thresholds measured on a subject. Then the masking noise is introduced at a fixed sound pressure level and the initial signal is presented at the same time. The level of the initial signal is varied until the new threshold is measured, defining this masked threshold.