Chris Priest [ARCHIVE] on Nostr: 📅 Original date posted:2015-12-20 📝 Original message:Block witholding attacks ...
📅 Original date posted:2015-12-20
📝 Original message:Block witholding attacks are only possible if you have a majority of
hashpower. If you only have 20% hashpower, you can't do this attack.
Currently, this attack is only a theoretical attack, as the ones with
all the hashpower today are not engaging in this behavior. Even if
someone who had a lot of hashpower decided to pull off this attack,
they wouldn't be able to disrupt much. Once that time comes, then I
think this problem should be solved, until then it should be a low
priority. There are more important things to work on in the meantime.
On 12/19/15, Peter Todd via bitcoin-dev
<bitcoin-dev at lists.linuxfoundation.org> wrote:
> At the recent Scaling Bitcoin conference in Hong Kong we had a chatham
> house rules workshop session attending by representitives of a super
> majority of the Bitcoin hashing power.
>
> One of the issues raised by the pools present was block withholding
> attacks, which they said are a real issue for them. In particular, pools
> are receiving legitimate threats by bad actors threatening to use block
> withholding attacks against them. Pools offering their services to the
> general public without anti-privacy Know-Your-Customer have little
> defense against such attacks, which in turn is a threat to the
> decentralization of hashing power: without pools only fairly large
> hashing power installations are profitable as variance is a very real
> business expense. P2Pool is often brought up as a replacement for pools,
> but it itself is still relatively vulnerable to block withholding, and
> in any case has many other vulnerabilities and technical issues that has
> prevented widespread adoption of P2Pool.
>
> Fixing block withholding is relatively simple, but (so far) requires a
> SPV-visible hardfork. (Luke-Jr's two-stage target mechanism) We should
> do this hard-fork in conjunction with any blocksize increase, which will
> have the desirable side effect of clearly show consent by the entire
> ecosystem, SPV clients included.
>
>
> Note that Ittay Eyal and Emin Gun Sirer have argued(1) that block
> witholding attacks are a good thing, as in their model they can be used
> by small pools against larger pools, disincentivising large pools.
> However this argument is academic and not applicable to the real world,
> as a much simpler defense against block withholding attacks is to use
> anti-privacy KYC and the legal system combined with the variety of
> withholding detection mechanisms only practical for large pools.
> Equally, large hashing power installations - a dangerous thing for
> decentralization - have no block withholding attack vulnerabilities.
>
> 1) http://hackingdistributed.com/2014/12/03/the-miners-dilemma/
>
> --
> 'peter'[:-1]@petertodd.org
> 00000000000000000188b6321da7feae60d74c7b0becbdab3b1a0bd57f10947d
>
📝 Original message:Block witholding attacks are only possible if you have a majority of
hashpower. If you only have 20% hashpower, you can't do this attack.
Currently, this attack is only a theoretical attack, as the ones with
all the hashpower today are not engaging in this behavior. Even if
someone who had a lot of hashpower decided to pull off this attack,
they wouldn't be able to disrupt much. Once that time comes, then I
think this problem should be solved, until then it should be a low
priority. There are more important things to work on in the meantime.
On 12/19/15, Peter Todd via bitcoin-dev
<bitcoin-dev at lists.linuxfoundation.org> wrote:
> At the recent Scaling Bitcoin conference in Hong Kong we had a chatham
> house rules workshop session attending by representitives of a super
> majority of the Bitcoin hashing power.
>
> One of the issues raised by the pools present was block withholding
> attacks, which they said are a real issue for them. In particular, pools
> are receiving legitimate threats by bad actors threatening to use block
> withholding attacks against them. Pools offering their services to the
> general public without anti-privacy Know-Your-Customer have little
> defense against such attacks, which in turn is a threat to the
> decentralization of hashing power: without pools only fairly large
> hashing power installations are profitable as variance is a very real
> business expense. P2Pool is often brought up as a replacement for pools,
> but it itself is still relatively vulnerable to block withholding, and
> in any case has many other vulnerabilities and technical issues that has
> prevented widespread adoption of P2Pool.
>
> Fixing block withholding is relatively simple, but (so far) requires a
> SPV-visible hardfork. (Luke-Jr's two-stage target mechanism) We should
> do this hard-fork in conjunction with any blocksize increase, which will
> have the desirable side effect of clearly show consent by the entire
> ecosystem, SPV clients included.
>
>
> Note that Ittay Eyal and Emin Gun Sirer have argued(1) that block
> witholding attacks are a good thing, as in their model they can be used
> by small pools against larger pools, disincentivising large pools.
> However this argument is academic and not applicable to the real world,
> as a much simpler defense against block withholding attacks is to use
> anti-privacy KYC and the legal system combined with the variety of
> withholding detection mechanisms only practical for large pools.
> Equally, large hashing power installations - a dangerous thing for
> decentralization - have no block withholding attack vulnerabilities.
>
> 1) http://hackingdistributed.com/2014/12/03/the-miners-dilemma/
>
> --
> 'peter'[:-1]@petertodd.org
> 00000000000000000188b6321da7feae60d74c7b0becbdab3b1a0bd57f10947d
>