Event JSON
{
"id": "3d8bd5f8d4efc79d5f90ec8604fb0afdbebc81a92a50e957f565c93db03bfd67",
"pubkey": "e0baa8ebcaeed55330a87a40682c68d13c3a914775b416071eddee59f74b962c",
"created_at": 1731195425,
"kind": 1,
"tags": [
[
"p",
"c176a55ed8a5f4240dd6154f81df0176998ba869d48bef575c47e33c9207d4b2",
"wss://relay.mostr.pub"
],
[
"p",
"3422fcbc32f333fb2d3481b2e981258af8a0b571869cbfe93c42962410e232ef",
"wss://relay.mostr.pub"
],
[
"e",
"d2ca1761d0ae595d18f4d1c4a571ef7f71a88bea35eb4707f22267f046c568f6",
"wss://relay.mostr.pub",
"reply"
],
[
"proxy",
"https://mstdn.io/users/sjb/statuses/113455623399218545",
"activitypub"
]
],
"content": "nostr:npub1c9m22hkc5h6zgrwkz48crhcpw6vch2rf6j97746ugl3neys86jeqyz9xjd I've been wondering if the fact it tries to approximate a circle is related to the central limit theorem in some way. If you take the 2D distribution where (±1,0) and (0,±1) are equally likely, a sum of many of that should approximate a 2D Gaussian, which has circular contours.",
"sig": "e2e7c6a289cc970a4e2157713cc3a5989bee7ec7725155fe68f4655ffb2dcd41128f1a106ac53d0d05e76df2e17c716a8360be73e46dba63a9dac1717b1a61ff"
}