rjf_berger on Nostr: npub1tfxfz…qn4hu About intuition: Take the continuous variant as an upper and lower ...
npub1tfxfz24qp6zykjngnxvp26fhztlj8h8srrf327afhtyy28rnptwshqn4hu (npub1tfx…n4hu) About intuition: Take the continuous variant as an upper and lower bound (stopping the integration either at n or n+1): \[ \int_0^{n/(n+1)} x^3 dx = (n+1/0)^4/4\] while the lhs. of your expression is \((\sum_{k=1}^n k)^2=(\frac{n(n+1)}{2})^2\). Thus there must be \[ \frac{(n+1)^4}{4} > (\sum_{k=1}^n k)^2=\frac{n^2(n+1)^2}{4} > \frac{n^4}{4}\] which is pretty obvious.
Published at
2023-05-25 11:29:02Event JSON
{
"id": "9de3d5fc6854f81828893931abbcb956c0815e445f967eace1e953ca1564eae8",
"pubkey": "c88f9fd6a7236b3825471f142d204a955b52efc3e94d42b1b0c32464fac3011a",
"created_at": 1685014142,
"kind": 1,
"tags": [
[
"p",
"5a4c912aa00e844b4a68999815693712ff23dcf018d3157ba9bac8451c730add",
"wss://relay.mostr.pub"
],
[
"p",
"2722188d0826947ce4229d0943a6c84826afb090871c472be7c3c1bbfecbd41e",
"wss://relay.mostr.pub"
],
[
"e",
"392cd03bf43c0da710f0316c7f978e14610844c52a2c9bbbc40677b0dbb7f021",
"wss://relay.mostr.pub",
"reply"
],
[
"mostr",
"https://mathstodon.xyz/users/rjf_berger/statuses/110429086841855658"
]
],
"content": "nostr:npub1tfxfz24qp6zykjngnxvp26fhztlj8h8srrf327afhtyy28rnptwshqn4hu About intuition: Take the continuous variant as an upper and lower bound (stopping the integration either at n or n+1): \\[ \\int_0^{n/(n+1)} x^3 dx = (n+1/0)^4/4\\] while the lhs. of your expression is \\((\\sum_{k=1}^n k)^2=(\\frac{n(n+1)}{2})^2\\). Thus there must be \\[ \\frac{(n+1)^4}{4} \u003e (\\sum_{k=1}^n k)^2=\\frac{n^2(n+1)^2}{4} \u003e \\frac{n^4}{4}\\] which is pretty obvious.",
"sig": "7734362984510df5d0d5a50268fbd382d43f26e3cd2e9d7eda051cd7e184311a41a3fbb6b0f4e138e22448adde18790a00e7fe4d04f570a93fe8ea99dfa206d8"
}