Event JSON
{
"id": "969094c57f109b7b6d2073775b9219c93239eb861df65ec9576811fac9d425d4",
"pubkey": "b898268cc7dccc02177537036c66b61a69aa83b851121e05c571de339c47158d",
"created_at": 1718678504,
"kind": 1,
"tags": [
[
"e",
"a6458d8dee14d0e4c6cfe8a2aa1775e1abbc0dcac1099b2808613820be10a448",
"",
"reply"
],
[
"proxy",
"https://wandering.shop/@xgranade/112635314487287694",
"web"
],
[
"e",
"e3e4abf8c281724f0c2e0b60d7e9e36adfc7f83506aa9ba8235e35b11cfcf5ff",
"",
"root"
],
[
"p",
"b898268cc7dccc02177537036c66b61a69aa83b851121e05c571de339c47158d"
],
[
"proxy",
"https://wandering.shop/users/xgranade/statuses/112635314487287694",
"activitypub"
],
[
"L",
"pink.momostr"
],
[
"l",
"pink.momostr.activitypub:https://wandering.shop/users/xgranade/statuses/112635314487287694",
"pink.momostr"
]
],
"content": "Using a calculator, or something like Python's log function*, you can check that log(1 - ¼) ≈ -0.125, and log(1 - ½) ≈ -0.30, so to find out how much power you've lost through both, you can just add -0.125 to -0.3 to get -0.425. To go back to multiplication at the end, 10^-0.425 ≈ 37.6%. Not bad for keeping only two decimal places.\n\n(*Python's log function assumes base 𝑒 by default; make sure to use `math.log(x, 10)` to represent log₁₀.)",
"sig": "f34e77006062e437f6e154d1ebb60d39e08ef96560eb8346fc888870b313337a4ca1ed7709586bc5277847eb6a6f761d0ded6fac6ea111e5ab98a03804c7051c"
}