Event JSON
{
"id": "7f5d0f73e2d016d9f87bc3dccc91efcd543c9467d8c5c62defe1eae16c9b8d6f",
"pubkey": "d9c6f25fb3b416b6554f7e571a1b927aa0e01d90a49f592e3e0ec74bd0986bba",
"created_at": 1734652883,
"kind": 1,
"tags": [
[
"t",
"gis"
],
[
"t",
"spatial"
],
[
"t",
"mapping"
],
[
"t",
"workflow"
],
[
"t",
"global"
],
[
"t",
"grassland"
],
[
"t",
"shrubland"
],
[
"t",
"vegetation"
],
[
"t",
"spatialanalysis"
],
[
"t",
"AI"
],
[
"t",
"machinelearning"
],
[
"t",
"spatiotemporal"
],
[
"t",
"remotesensing"
],
[
"t",
"earthobservation"
],
[
"t",
"glad"
],
[
"t",
"landsat"
],
[
"t",
"imagery"
],
[
"t",
"opendata"
],
[
"t",
"landcover"
],
[
"t",
"agriculture"
],
[
"t",
"change"
],
[
"t",
"natural"
],
[
"t",
"model"
],
[
"t",
"modeling"
],
[
"t",
"pasture"
],
[
"t",
"cultivated"
],
[
"t",
"globalpasturewatch"
],
[
"t",
"grazing"
],
[
"t",
"livestock"
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/682/202/766/874/604/original/87b1e54c73eac2eb.jpg",
"m image/jpeg",
"dim 2048x609",
"blurhash UZDJxBXVW9oeX=bxjEa}bfWAjEbIRjV=f5kD"
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/682/202/769/255/670/original/05226a28d88acf91.jpg",
"m image/jpeg",
"dim 1495x1655",
"blurhash UBQmCqE0R%IT00ITRiM{oyInkBWU-oofM{WB"
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/682/202/775/369/036/original/a5c2fe27fed5a9de.jpg",
"m image/jpeg",
"dim 1900x1109",
"blurhash UlJ*n=D%-;t89FWUofof_Nj?WBWBM{aebIj["
],
[
"imeta",
"url https://files.techhub.social/media_attachments/files/113/682/202/786/407/335/original/af83a2fa5710fda5.jpg",
"m image/jpeg",
"dim 1888x2567",
"blurhash UOPP$69u?b4;Ipe:-;aJ%%xD%M$*Mdoz%Mo#"
],
[
"proxy",
"https://techhub.social/users/GregCocks/statuses/113682211356815891",
"activitypub"
]
],
"content": "Annual 30 Metre Maps Of Global Grassland Class And Extent (2000–2022) Based On Spatiotemporal Machine Learning\n--\nhttps://doi.org/10.1038/s41597-024-04139-6 \u003c-- shared paper\n--\nhttps://landcarbonlab.org/insights/first-global-annual-cultivated-natural-grassland-data/ \u003c-- blog post\n--\nhttps://developers.google.com/earth-engine/datasets/publisher/global-pasture-watch \u003c-- Google EarthEngine\n--\nhttps://github.com/wri/global-pasture-watch \u003c-- GitHub Repository\n--\n#GIS #spatial #mapping #workflow #global #grassland #shrubland #vegetation #spatialanalysis #AI #machinelearning #spatiotemporal #remotesensing #earthobservation #GLAD #landsat #imagery #opendata #landcover #agriculture #change #natural #model #modeling #pasture #cultivated #GlobalPastureWatch #grazing #livestock\n\nhttps://files.techhub.social/media_attachments/files/113/682/202/766/874/604/original/87b1e54c73eac2eb.jpg\nhttps://files.techhub.social/media_attachments/files/113/682/202/769/255/670/original/05226a28d88acf91.jpg\nhttps://files.techhub.social/media_attachments/files/113/682/202/775/369/036/original/a5c2fe27fed5a9de.jpg\nhttps://files.techhub.social/media_attachments/files/113/682/202/786/407/335/original/af83a2fa5710fda5.jpg",
"sig": "3d68ad9c271d93c4592045da293e615ce181a170a7e742046c44c19572d04ae7d7670d99a7a8cdd3f3ccac1ec4da0c268dbcc4211317d8a0bdd1501ec09ec18e"
}